Fourth Order Partitioned Methods Designed for the Time Integration of Atmospheric Models
نویسندگان
چکیده
In this paper we derive a fourth order two step Runge-Kutta method with four stages, for additively partitioned systems of ordinary differential equations. Our main objective is that it will be useful as horizontally explicit and vertically implicit (HEVI) atmospheric models. our the diagonal coefficients in part are all equal, HEVI-stability properties seem to excellent. Further, accuracies obtained simple test problems, used different resolutions integration intervals, considerably surpass those third one also comparison.
منابع مشابه
Krylov Implicit Integration Factor Methods for Semilinear Fourth-Order Equations
Implicit integration factor (IIF) methods were developed for solving time-dependent stiff partial differential equations (PDEs) in literature. In [Jiang and Zhang, Journal of Computational Physics, 253 (2013) 368–388], IIF methods are designed to efficiently solve stiff nonlinear advection–diffusion–reaction (ADR) equations. The methods can be designed for an arbitrary order of accuracy. The st...
متن کاملFourth-order Symplectic Integration*
In this paper we present an explicit fourth-order method for the integration of Hamilton’s Equations. This method preserves the property that the time evolution of such a system yields a canonical transformation from the initial conditions to the final state. That is, the integration step is an explicit symplectic map. Although the result is first derived for a specific type of Hamiltonian, it ...
متن کاملthe application of multivariate probit models for conditional claim-types (the case study of iranian car insurance industry)
هدف اصلی نرخ گذاری بیمه ای تعیین نرخ عادلانه و منطقی از دیدگاه بیمه گر و بیمه گذار است. تعین نرخ یکی از مهم ترین مسایلی است که شرکتهای بیمه با آن روبرو هستند، زیرا تعیین نرخ اصلی ترین عامل در رقابت بین شرکتها است. برای تعیین حق بیمه ابتدا می باید مقدار مورد انتظار ادعای خسارت برای هر قرارداد بیمه را برآورد کرد. روش عمومی مدل سازی خسارتهای عملیاتی در نظر گرفتن تواتر و شدت خسارتها می باشد. اگر شر...
15 صفحه اولFourth-Order Splitting Methods for Time-Dependant Differential Equations
This study was suggested by previous work on the simulation of evolution equations with scale-dependent processes, e.g., wave-propagation or heat-transfer, that are modeled by wave equations or heat equations. Here, we study both parabolic and hyperbolic equations. We focus on ADI (alternating direction implicit) methods and LOD (locally one-dimensional) methods, which are standard splitting me...
متن کاملHigh-order Galerkin methods for scalable global atmospheric models
Three different high-order finite element methods are used to solve the advection problem—two implementations of a discontinuous Galerkin and a spectral element (high-order continuous Galerkin) method. The three methods are tested using a 2D Gaussian hill as a test function, and the relative L2 errors are compared. Using an explicit Runge–Kutta time stepping scheme, all three methods can be par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tellus A
سال: 2023
ISSN: ['1600-0870', '0280-6495']
DOI: https://doi.org/10.16993/tellusa.342